
Fabric Lakehouse Loading using Data
Pipelines & Notebooks – Inspired by MS
End-to-End Tutorials

I joke about “I’m not much of a Spark Developer” all the time and I’m not
joking, really I’m not. I’m a SQL developer. I’ve built Data Warehouses using
SQL. I’ve cleansed data using SQL, transformed data using SQL, delivered
data using SQL. But…I do see the value in understanding more of what
Spark and Pyspark has to offer. The more I see just a few lines of Python
doing quite a lot of work, the more interested I get.
Building repeatable iterative data processing frameworks in just a few
lines of code? Yes please!

Microsoft has created a set of End-to-End tutorials for various workloads
including Lakehouses. These are step-by-step walkthroughs to get you up
and running with various workloads available within Fabric. Yes you can
approach these as stand-alone guides, but you can also use them as a
springboard into creating your own solutions. And that’s exactly what I did.

In this blog I’m going to step through what I did to modify the example
end-to-end solution to meet my own objectives.

Microsoft’s End-to-End Scenarios can serve as a building block to
your own solutions

Part of the Lakehouse End-to-End scenario contains a Spark Notebook
that iterates over a list of source folders that contains Lakehouse file data,
and creates/overwrites a Delta table in a Lakehouse for each folder. What I
want to do is use this as a starting point and modify it to meet my own
specific use-case.

https://learn.microsoft.com/en-us/fabric/get-started/end-to-end-tutorials

Scenario
My objective is to create a Lakehouse in Fabric that I can then load source
data into and create Delta tables, in effect I want to create
a Raw/Bronze zone. I can then query these Delta tables for further
downstream processing (Silver/Gold etc). Now, I don’t necessarily know
what source data is going to be available so I need a process that can
save available data to the Files section of a Lakehouse and then iterate
over a list of available data to process.

I’m not going to work through the actual end-to-end solution in this post
as that’s a bit pointless, you can do that yourself by following the scenario
guide here. What I am going to do is modify it for my own use, tweak it here
and there to get it to do what I want. The section of the MS guide I’m going
to use as a template is the Prepare and transform data in the lakehouse

Scenario Objective

• Load raw data into a new folder each time the process is run, this
folder will contain child folders per source table/object

• Pass through a list of the child folders into a Notebook to iterate over,
add some extra metadata columns like load datetime and source
folder name.

• Allow the source schema to drift (e.g. a new source column is
added) and save to a Delta table

• Each load is to be appended to the relevant Delta table

https://learn.microsoft.com/en-us/fabric/data-engineering/tutorial-lakehouse-data-preparation
https://learn.microsoft.com/en-us/fabric/data-engineering/tutorial-lakehouse-data-preparation
https://learn.microsoft.com/en-us/fabric/data-engineering/tutorial-lakehouse-data-preparation

Each time the load is run, any available data in the source folder will be
copied over to a new datetime folder in the Lakehouse Files section. This
source data could be anything, a full copy of the source data, or
incremental data. Either way, we are saving a new copy of the data with
each load.

The Notebook code is available in GitHub here.

Pipeline and Notebook Process
For the actual process, it’ll be doing the following:

• Use a Set Variable to set a variable to be a datetime – this will be
used as the name of the folder to store the raw Files

• Use a Copy Data task to move data into the Files section of a
Lakehouse into a datetime folder

• Use a Get Metadata Activity task to read the list of source folders
that have been copied to the datetime folder

• Pass this JSON metadata plus the source folder into a Notebook as
parameters

• In the Notebook, it’ll loop through the JSON metadata (folder list):
o Extract each folder name from the JSON
o Add datetime column to the dataframe

https://github.com/datahai/lakehousemodifyer

o Add source folder column to the dataframe
o Append into a Delta table

Pipeline Flow Diagram
The pipeline flow that we’ll be creating is as follows:

Walkthrough
Let’s now walkthrough the process of creating a new Lakehouse to store
the raw Files and Delta tables, creating the Spark Notebook, then the Data
Pipeline that ties everything together.

Create new Lakehouse
This step assumes you have a workspace in Power BI/Fabric that is
assigned to a Fabric capacity (current Premium, Fabric trial, or Azure F
SKU).

• In the workspace, click New > Lakehouse
• Give the lakehouse a name and click Create
• After a few moments you’ll see the Lakehouse item and also a SQL

Endpoint item (read only SQL queries)

Create Spark Notebook to load Delta Tables
I’ll use the tutorial file 01 – Create Delta Tables.jpynb (available on GitHub
here) and amend as appropriate to get the results I want. The amended
notebook is available in my GitHub repo here. To create a new notebook:

• In the workspace, click New > Notebook
• Then click Add Lakehouse > Existing Lakehouse > Add
• Select the new Lakehouse created earlier and click Add

https://github.com/microsoft/fabric-samples/tree/main/docs-samples/data-engineering/Lakehouse%20Tutorial%20Source%20Code
https://github.com/microsoft/fabric-samples/tree/main/docs-samples/data-engineering/Lakehouse%20Tutorial%20Source%20Code

This notebook will have 3 separate code cells, with 1 of the cells set as
a parameter cell. Copy the code below into 3 separate cells. To create a
cell, hover over the notebook and a menu should appear allowing you to
click Code (Add Code Cell).

#standard settings in every Microsoft demo of the Lakehouse :)

#sets the V-Order special sauce

spark.conf.set("spark.sql.parquet.vorder.enabled", "true")

spark.conf.set("spark.microsoft.delta.optimizeWrite.enabled", "true")

spark.conf.set("spark.microsoft.delta.optimizeWrite.binSize", "1073741824")

With the code below, once the variables have been copied into the cell,
click the ellipsis (More Commands) to the right of the cell and
select Toggle Parameter Cell. You should then see the
text Parameters appear to the bottom right of the cell.

#parameters for the source folder and the json list of child tables to loop through

#this is passed in by a Data Pipeline

source_folder = ''

source_table_list = ''

Then the 3rd cell contains the code to process the JSON string passed
through via the pipeline, create a list and populate with the folder name,
and then iterate over this list and call a function to load the raw data to
Delta tables.

from pyspark.sql.types import *

from pyspark.sql.functions import *

import ast

import json

#create function to save each source folder to a Delta table

def loadDataFromSource(source_folder, table_name):

#load raw data from Files

df = spark.read.format("parquet").load('Files/' + source_folder + '/' + table_name)

df = df.withColumn("RawLoadDateTime", current_timestamp()) \

.withColumn("RawFolderSource",source_folder)

#append new metadata columns and save to Delta table

df.write.mode("append").format("delta").option("mergeSchema", "true").save("Tables/" + table_name)

#load json list of tables

table_list = json.loads(source_table_list)

#create new empty list

table_result_list = []

#loop over json object and save name of table to list

for json_dict in table_list:

table_result_list.append(json_dict['name'])

for i in table_result_list:

loadDataFromSource(source_folder,i)

Data Pipeline
In this section we’ll create the Data Pipeline that will load the raw data into
the Lakehouse Files area and trigger the notebook to load the raw files into
the Lakehouse Tables area as Delta tables.

Create new Data Pipeline

In this section we’ll create the Data Pipeline that will load the raw data into
the Lakehouse Files area and trigger the notebook to load the raw files into
the Lakehouse Tables area as Delta tables.

• In the workspace that the Lakehouse was created in,
click New > Data Pipeline

Set Variable

This variable is used to store the datetime that the pipeline was run and it
then passed through to the Copy Data and Notebook task as a parameter.

• In the pipeline top menu, click Activities and select Set Variable
• On the activity, select the Settings tab and ensure Pipeline

Variable is set
• Click New next to Name and give the variable name

like rawfoldername, make sure String is selected as the Type then
click Confirm

• In Value, hover just underneath the textbox and click Add Dynamic
Content and in the Pipeline expression builder add @utcnow() (or
whatever datetime expression you wish the folders to be named).

Copy Data

This task will load raw files from a source data lake folder and save to the
Files section of the Lakehouse. It uses the variable created earlier as the
destination folder name.

• In the pipeline top menu click Activities and select Copy Data > Add
to canvas

• In the Source tab of the Copy Data activity, add a connection to a
relevant data source. In my case its to an Azure Data Lake
Gen2 account where the source data is stored in Parquet format.

• As I’m copying the files over, I’m choosing Binary as the file format.

• On the Destination tab, select Workspace as the Data store type
and select the new Lakehouse created earlier.

• Ensure that Files is selected as the Root folder
• Under the File path textbox, click Add Dynamic Content and add the

following expression:
o rawsales/@{variables(‘rawfoldername’)}

• Select Binary as the File format.

FYI there is a shortcut feature within Fabric that can link to external data in
an ADLS Gen2 account instead of copying the files into the Lakehouse
(backed by OneLake), however for my objective, I wish to be able to extend
the usage of the pipeline to any data source I can extract from and land
into OneLake.

Get Metadata

This is the activity that will now generate a list of all the child folders that
were copied over as part of the Copy Data activity. This generation is
dynamic, as I may not know at pipeline runtime what data is available in
the source folder. E.G. the source folder could be cleared down and an
incremental set of data copied over.

• In the pipeline top menu click Activities and select Get Metadata
• On the Settings tab, select the new Lakehouse in the Workspace
• Ensure Files is selected as the Root folder
• Under the File path textbox, click Add Dynamic Content and add the

following expression:
o rawsales/@{variables(‘rawfoldername’)}

• In Field list, click + New and select Child items

This will then generate a JSON object with all the available folder names
that were copied over, and can be passed as a parameter into the
Notebook.

Notebook

Let’s now add a Notebook activity to the pipeline and pass in the JSON
object of child folders into the json_table_list parameter, plus the source
folder parameter.

• In the pipeline top menu click Activities and select Notebook
• On the Settings tab, select the Notebook created earlier
• In the Base parameters section, create 2 parameters matching the

names of the Notebook parameters, and for each Value, click Add
Dynamic Content:

o source_folder: rawsales/@{variables(‘rawfoldername’)}
o json_table_list: @string(activity(‘Get Child Folders to

Load’).output.childItems)

Running the Pipeline
Now that we have created all our activities and wired up the Notebook, let’s
trigger the pipeline and see the output. On the pipeline top-menu,
click Run > Validate. If the pipeline is validated successfully then
click Run > Run. We’ll be able to see each activity status in
the Output window.

Now if we open the Lakehouse and expand the Tables area, we should see
the list of Delta tables. By clicking the ellipsis next to a table name and
selecting View Files we can now see all the Parquet files (and the
_delta_log folder) that underpin that table.

By switching to the SQL Endpoint view (top-right menu in the Lakehouse)
and writing a SQL query (yes, back on familiar territory) I can then query
the table and also see the 2 new derived columns. I can then use this
downstream is further loading processes.

Conclusion
As I said at the beginning of this blog post, I’m not much of a Spark
Developer, but I’m willing to jump in and get going, and using the Microsoft
End-to-End scenarios has really helped me take a step towards using
PySpark for data loading and transformation.

And here’s the great thing, now that this basic process is in-place, I can
start to extend and modify it as I add more objective to the process.
Ultimately I want this to be a generic module I can plug into any data
loading process for my raw layer. I want to look at using Python’s
multithreading to execute the Delta table loads in parallel, and adding
error handling to the process too. All in good time, and I will of course share
the journey.

As always, feel free to reach out to me to discuss anything in this blog.

References
• End-to-end tutorials in Microsoft Fabric – Microsoft Fabric | Microsoft

Learn
• Lakehouse tutorial – Prepare and transform data in the lakehouse –

Microsoft Fabric | Microsoft Learn
• Azure Data Factory Get Metadata Example (mssqltips.com)
• azure data factory – how to pass the outputs from Get metadata

stage and use it for file name comparison in databricks notebook –
Stack Overflow

• python 3.x – How to create a list from json key:values in python3 –
Stack Overflow

• Develop, execute, and manage notebooks – Microsoft Fabric |
Microsoft Learn

• Apache Spark Tutorial with Examples – Spark By {Examples}
(sparkbyexamples.com)

https://learn.microsoft.com/en-us/fabric/get-started/end-to-end-tutorials
https://learn.microsoft.com/en-us/fabric/get-started/end-to-end-tutorials
https://learn.microsoft.com/en-us/fabric/data-engineering/tutorial-lakehouse-data-preparation
https://learn.microsoft.com/en-us/fabric/data-engineering/tutorial-lakehouse-data-preparation
https://www.mssqltips.com/sqlservertip/6246/azure-data-factory-get-metadata-example/
https://stackoverflow.com/questions/72968989/how-to-pass-the-outputs-from-get-metadata-stage-and-use-it-for-file-name-compari
https://stackoverflow.com/questions/72968989/how-to-pass-the-outputs-from-get-metadata-stage-and-use-it-for-file-name-compari
https://stackoverflow.com/questions/72968989/how-to-pass-the-outputs-from-get-metadata-stage-and-use-it-for-file-name-compari
https://stackoverflow.com/questions/45655721/how-to-create-a-list-from-json-keyvalues-in-python3
https://stackoverflow.com/questions/45655721/how-to-create-a-list-from-json-keyvalues-in-python3
https://learn.microsoft.com/en-us/fabric/data-engineering/author-execute-notebook
https://learn.microsoft.com/en-us/fabric/data-engineering/author-execute-notebook
https://sparkbyexamples.com/
https://sparkbyexamples.com/

